Communications Protocol
ME 218C Spring 2016

Table of Contents:

Section 1: Definitions
Section 2: Communications Overview
Section 3: Hardware Requirements
Section 4: Packet Structure

4.1 XBee API Packet Structure:

4.2 Packet Types:

4.3 Pair Request Packet:

4.4 Encryption Key Packet:

4.5 Control Packet:

4.6 Status Packet:
Section 5: Encryption Protocol
Section 6: Communication State Charts

Section 7: Sample Communications Sequences

Section 1: Definitions

Term Definition

LOBBYIST A remote-controlled hovercraft capable of moving forward/backward, left/right
and optionally performing a digitally controlled special action.

PAC A controller capable of interfacing with any of the LOBBYISTs. Required inputs
are: pairing action, fwd/back, left/right and digital special action.

pairing action A command input that, when performed, will initiate a pairing sequence
between the PAC and the LOBBYIST.

Section 2: Communications Overview

This document describes the protocol to be used for communication between remote controlled
hovercraft (LOBBYIST) and its controller (PAC). On the day of the project presentation, a tournament
will take place. In each round (lasting 218 seconds), two teams of three will compete against each
other (red team and blue team). Each team will get three random PACs, and there will be a total of
four LOBBYISTs on the field. Each LOBBYIST must be able to interface with any of the PACs. A
successful pairing will allow a PAC to control the LOBBYIST for 45 seconds or until the connection gets
interrupted. The task of the LOBBYISTs is to herd lawmakers (ping pong balls) into revolving doors
(goals) to score points. The arena will have two reversers, plates that will temporarily convert their
respective goals into the goal of opposite color.

The communication between PACs and LOBBYISTs will be carried out using XBee radio modules
working in APl mode. The maximum frequency of exchanges between a PAC and its LOBBYIST will be
5Hz. This will need to be enforced by the PAC using its timers to disable requests for 20 ms after each
transmitted packet. In order to take control of a LOBBYIST, the PAC will send a pairing request to it.
The LOBBYIST will then respond with a status packet acknowledging the pairing. After a successful
pairing, a 32 byte key will be sent to the LOBBYIST by the PAC. From then on, the PAC will send control
packets to the LOBBYIST, with rolling encryption. Every command must be acknowledged by the
LOBBYIST through the use of a status packet. Following a 1 second lack of transmissions, or after 45
seconds after the initial pairing, the PAC and the LOBBYIST will unpair from each other and go into the
free state. A paired LOBBYIST will ignore any incoming pairing requests.

Section 3: Hardware Requirements

In order to implement the radio communication described in this document, the following minimum
hardware requirements are necessary:

@® All teams will use XBee radio modules (Zigbee) to implement radio communication between
PAC and LOBBYIST.

@ Both the LOBBYIST and PAC will carry one of these modules on board. Each radio module will
have an address associated with it (2180 through 218B) and (2080 through 208B). Each robot
will also have an ID number assigned using a hardware attachment.

@ The communication between any micro-controller and the XBee radio module should take
place via asynchronous serial communication only. (UART)

@ The asynchronous serial communication between any onboard micro-controller and any Xbee
board will take place at a fixed bit rate of 9600.

@ The PAC and LOBBYIST can transmit at a maximum rate of 5Hz each. That includes failed
transmissions. It also means that a response can occur faster than 200ms after a message is
received.

Section 4: Packet Structure

4.1 XBee API Packet Structure:

The figure below provides reference for the structure of the XBee TX packet. All the packets described
throughout section 4 are contained within the RF Data section of the transmission.

Start Delirmiter Length Frame Data Checksum
0x7E MsSB LsB API-specific Structure 1 Byte
%m{ur lm"r—spﬁ%
ox01 cmdData
mreu (Bytes 6-7) Options (Byte 8) RF Data (Byte(s) 8-

|dentifies the UART data frame for the host to MSEB first, LSB last. Ox01 = Disable ACK

comelate with a subsequent ACK (acknowledgement). 8 s{ - OxFFFF 0x04 = Send packet with Broadcast Pan ID Up to 100 Bytes per packet
Setting Frame ID to ‘0" will disable response frame. All other bits must be set to O

Note: the Frame ID byte has no impact on the communications between the PAC and the LOBBYIST. It
is only used to identify which outgoing packet an XBee status message refers to. It's required that the
LOBBYIST receives a confirmation of receipt from the PAC’s XBee before rotating the its encryption
key. For that, the Frame ID has to be used but this document does not impose any implementation
details.

4.2 RF Data Structure:

RF Data (Bytes 9-n)

Packet Type (Byte 9) | Content (Byte 10) Content (Byte 11) Content (Byte 12-n)

4.3 Packet Types:

Packet type | Direction Header | Encrypted Contents [First Byte — Last Byte]
REQ_PAIR P—1L 0x00 N [PAIR_DATA]

ENCR_KEY P—1L 0x01 N [ENC_KEYO][ENC_KEY1] [ENC_KEY31]
CTRL P—1L 0x02 Y [CTRLO][CTRL1][CTRL2][CHKSM]

STATUS L—P 0x03 N [PAIR] [ACKDATA]

T Letter P refers to PAC and L to Lobbyist

4.4 Pair Request Packet:

@ Broadcast (destined for specific hovercraft using the ID number)
@ Packet length: Header + 1 data byte
Purpose:

The pair request packet is broadcast from a PAC seeking to pair with an unpaired Lobbyist. The
Lobbyist address is stored in bits 0 through 6 of the PAIR_DATA byte and the color is stored in bit 7.

Byte 0: [HEADER]
REQ_PAIR= 0x00

Byte 1: [PAIR_DATA]
The PAIR_DATA byte is used by the PAC to indicate which Lobbyist number (LBY) it wants to pair with.

PAIR_DATA

COLOR NUM6 NUM5 NUM4 NUM3 NUM?2 NUM1 NUMO

@ Bits<6-0>: The address number of a Lobbyist for playing in the game.
O While grading or game, only bits 1 and 0 will be used as up to four lobbyists will be
present. Bits 2 to 6 should be cleared. The transmitted number should represent the
LOBBYIST number minus one.
O For debugging, the user should program their LOBBYIST’s number to be equal to their
class team number + 3.
@ Bit 7: COLOR The color selector.
O |If set, assigns the LOBBYIST to the blue team. Otherwise the LOBBYIST will be red.

4.5 Encryption Key Packet:

@ Directed, unencrypted, PAC to paired Lobbyist
@ Packet length: Header + 32 data bytes

Purpose:
The 32 byte encryption key, starting with ENC_KEYO. Each byte is a random number generated by the
PAC every time pairing is performed.

Byte 0: [HEADER]
ENCR_KEY= 0x01

Byte 1: [ENC_KEY]

This is the 32 byte encryption key, sent from the zero index byte up to the 31st byte. This is a random
number generated by the PAC. Once paired, all of the control packet data sent from the PAC to the
Lobbyist (including the header byte) are encrypted using this key, until the end of the period of
control.

ENC_KEYO-ENC_KEY31- 32 byte encryption key

KEYBIT7 KEYBIT6 KEYBITS5 KEYBIT4 KEYBIT3 KEYBIT2 KEYBIT1 KEYBITO

N.B.: Send ENC_KEYO first.

NOTE: For testing, it may be helpful to use an encoder key of all FF’s. This way, the encrypted data
will just be complemented.

4.6 Control Packet:

@ Directed, encrypted
@ Packet length: Header + 4 data bytes

Purpose:

The CTRL bytes are sent from the PAC to the LOBBYIST and are used to control the motion of the
LOBBYIST, as well as any special actions the LOBBYIST might take. Note that all the bytes in the control
packet (including the packet header) are encrypted with the rolling key.

Byte 0: [HEADER]
CTRL= 0x02

Byte 1: [CTRLO]

All 8 bits of the CTRLO byte are used to create one signed integer, which specifies the forward and
backward speed of the LOBBYIST. When the CTRLO byte is a positive value, the LOBBYIST will move
forward. Conversely, when the CTRLO byte is a negative value, the LOBBYIST will move backward.
When the CTRLO byte has a value of 0, the LOBBYIST's propulsion should be off. This byte can store a
signed integer ranging in value from -128, which represents reversal at full speed, to +127, which
represents full speed forward.

CTRLO - Analog Forward/Backward Control

FB7 FB6 FB5 FB4 FB3 FB2 FB1 FBO

@ Bits <7:0> - Signed 8 bit integer

Byte 2: [CTRL1]

All 8 bits of the CTRL1 byte are used to create one signed integer, which specifies the directional
control for the LOBBYIST. When the CTRL1 byte is a positive value, the LOBBYIST will turn to the right.
Conversely, when the CTRL1 byte is a negative value, the LOBBYIST will turn left. When the CTRL1 byte
has a value of 0, the LOBBYIST should not turn in either direction. This byte can store a signed integer
ranging in value from -128, which represents turning left at the fastest speed possible, to +127, which
represents turning right at the fastest speed possible.

CTRL1 - Analog Left/Right Control

LR7 LR6 LR5 LR4 LR3 LR2 LR1 LRO

@ Bits <7:0> - Signed 8 bit integer

Byte 3: [CTRL2]

The CTRL2 byte is used to specify any special actions a LOBBYIST can take. These actions include
braking, purposely unpairing with the PAC, and any other optional special actions designated at the
discretion of each team*.

*Note: Teams who use bits 2-7 should be aware that other PACs may not be able to control these
special actions because they will not have user input modes available to control them.

CTRL2 - Special Actions

SA5 SA4 SA3 SA2 SA1 SAO UNPR BRK

@ Bits <7:2> - Special actions (7 to 3 optional, SAO must be available in every PAC)*
O 1= Activate special action
O 0 = Deactivate special action

@ Bit 1 - Unpairing

O 1=Unpair
O 0 =Remain Paired
@ Bit0- Brake

O 1=Apply brake
O 0= Disengage brake

*Unimplemented special action bits should be cleared.

Byte 4: [CHKSM]

CHKSM is used as an error checking measure to ensure the decryption process remains in sync. Every
time a control packet is sent by the PAC, control bytes 0, 1, 2, and 3 should be summed together and
the result should be placed in CHKSM (i.e. byte 4 of the control packet data). Once the control packet
has been received by the LOBBYIST, the packet should be decrypted and the LOBBYIST should s+um
bytes 0, 1, 2, and 3. If the result of this summation does not match the value sent in byte 4, an error
occurred and the decryption process should be treated as being out of sync. If this is the case, the
status packet should be updated such that the Pairing bit in STATUS is cleared and the Decryption
Failure bit in STATUS is set.

CHKSM - Decryption Error Checking

CHKSM7 CHKSM6 CHKSM5 CHKSM4 CHKSM3 CHKSM2 CHKSM1 CHKSMO
@ Bits <7:0> - Unsigned 8 bit integer

4.7 Status Packet:

@ Directed, semi encrypted (data byte 1 unencrypted, data byte 2 encrypted)

@ Packet length: Header + 2 data bytes

Purpose:

The STATUS packet is sent from the LOBBYIST to the PAC and is used to let the PAC know it is
connected to the LOBBYIST. The receipt of the packet is also a signal that the sent command has been
acknowledged. If the packet sent to the LOBBYIST was not encrypted (either a Pair Request or an
Encryption Key), then the DEC_ERR bit is clear. The STATUS packet also contains ACKDATA, the CTRL
Data check sum byte (encrypted) previously received, to tell the PAC which instruction is being
acknowledged.

Byte 0: [HEADER]
STATUS= 0x03

Byte 1: [PAIR]
Bit 0 in the PAIR byte is used to show whether the LOBBYIST is paired to a PAC or not.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DEC_ERR PAIR

@ Bit <7:2>: Unimplemented - read/write as zero
@ Bit 1: Decryption error bit

O 1 = Decryption failure occurred

O 0= Decryption successful or not applicable
@ Bit 0: Pairing bit

O 1=PACand LOBBYIST are paired

O 0=PAC and LOBBYIST are unpaired

Byte 2: [ACKDATA]

The ACKDATA byte being sent back to the PAC contains the encrypted CHKSM byte of the CTRL data
previously sent to the lobbyist that has been acknowledged by it. If the PAC fails to receive the
STATUS data bytes from the lobbyist within 100 ms, it shall resend the previous control byte sequence
to the lobbyist. However, if the acknowledge is received before the 100 ms timeout, the PAC can
check the ACKDATA to confirm the receive of its past CTRL data and can now prepare to send new
CTRL data.

ACKDATA
7

ACKDATA
6

ACKDATA
5

ACKDATA
4

ACKDATA
3

ACKDATA
2

ACKDATA
1

ACKDATA
0

@ Bits <7:0> - Unsigned 8 bit integer

Section 5: Encryption Protocol

Purpose:
To prevent de-synchronization between the PAC and the LOBBYIST

How to:

The encryption protocol consists of an XOR cipher with a 32 byte key sequence randomly generated
by the PAC. The XOR cipher is implemented by performing a bitwise XOR operation on the transmitted
data packet, using the current encryption byte as the operand. The key should be generated every
time a new pairing process is initiated between a lobbyist and the PAC. Post pairing, every byte of the
data packet sent by the PAC to the lobbyist will be encrypted using the current byte of the key. Note
the data packet consists only of the RF DATA part of the XBee packet. That includes all the bytes of the
control packet defined in section 4. The key will continue rotating between transmissions with the
index incrementing with each byte of data transmitted.

To ensure that the PAC is always in synchronization with the LOBBYIST, an additional checksum byte
will be required to be transmitted at the end of each control packet. The checksum byte is defined as
the sum of the header and content bytes in the control packet before encryption. The checksum byte
will be treated like a normal data byte i.e it will be encrypted with the continuing key index before
being transmitted as part of the data frame.

At the Lobbyist, the additional checksum byte (last byte) of the control packet is decrypted and
compared with the sum of all the other decrypted bytes of the control packet to establish the
legitimacy of the data received.

If the decrypted checksum matched the sum of the decrypted bytes of the control packet, the packet
received is confirmed as legitimate and the pair bit continues to be set in the STATUS byte that is sent
back. If the decrypted checksum does not match the sum, the decryption error bit is set in the
STATUS. In addition, the Lobbyist will clear the pair bit in the STATUS byte and unpair with the PAC. In
this case, the PAC and the LOBBYIST will have to re-establish pairing with a fresh key sequence to
resume communication.

10

Section 6: Communication State Charts

LOBBYIST

Event: Received Reguest-to-Pair

[Guards: Not last PAC. number in broadcast
matches own number]

+ Start 45s pairing timer

« Start 1s transmit timeout timer

« Activate lift fan

« Update DMC

» Transmit Status with pairing bit set

Paired - Waiting

Waiting for Pair

>

for Encryption

Event: 1s transmit timer timeout

« Deactivate lift fan

* Indicate 'available for pairing' on DMC
* Disable 45s pairing timer

« Disable 1s transmit timeout timer

« Transmit Status with pairing bit cleared

Event: Encryption Key Received
= Save encryption key locally
= Restart 1s transmit timeout timer
= Transmit Status with pairing bit set

Paired - Waiting

Event: 45s pairing timer timeout

Event: 1s transmit timer timeout

Event: PAC manual unpair

» Deactivate lift fan

 Indicate 'available for pairing' on DMC
« Disable 45s pairing timer

» Disable 1s transmit timeout timer

» Transmit Status with pairing bit cleared

Event: Failed decryption
* |n addition to above, set 'decrypt failed' bit in Status

for Control

Event: New Command Received
« Restart 1s transmit timeout timer
« Execute commands as required
* Transmit Status with pairing bit set

11

PG Event: Received Status with pair
Event: Request-to-Pair accepted (received bit set
Status with pair bit set) « If timer flag set: transmit
* Sendencryptionkey control packet, clear timer
Event: Debounce timer timeout * Start 1s transmit timeout timer flag, restart 200ms and 1s
+ Clear debounce timer L * Start 200ms update timer timers, rotate cipher
running flag + Clear flags + Else: Set ACK flag
Unpaired Paired
Event: User pair command £ : ; : i b Event: 200ms timer timeout
+ If debounce timer running, break vent. Received _Sttcnus V_fllh pair bit cleared ‘ s
: Event: 1s transmit timer timeout * ITACK flag set: transmit Control
+ Else: broadcast Request-to-Pair ket. Clear ACK flag. reset
< packet, g,
* Start debounce timer 200ms timer, rotate cipher
+ Start 200ms update timer + Else: Set timer flag
OR
retransmit the old control packet
without rotating the key

Notes to the PAC state diagram:
-if no ACK is received after sending a command, the PAC can resend the same message after 200ms
and keep trying until the 1s timer expires. However, until it gets an ACK, it cannot rotate the key.

Section 7: Sample Communications Sequences

Interaction PAC LOBBYIST
Transmits Request to Pair (broadcast, If already paired, ignores all broadcast
unencrypted) with number of targeted = | messages and messages directed towards

Pairing attempt

(LOBBYIST unavailable LOBBYIST other LOBBYISTs

to pair) Ready to transmit Request to Pair after
200ms
If LOBBYIST number in Request to Pair
matches own number:
@ Indicates successful pairing on DMC
Pairing attempt Transmits Request to Pair (broadcast, @ Indicates team color specified by
(LOBBYIST available to | unencrypted) with number of targeted = Request to Pair on DMC
pair) LOBBYIST and team color @ Starts 45s pairing timer

@ Starts 1s transmit timeout timer
@ Activates lift fan
@ Ignores any further broadcast

12

messages

Transmits Status (unencrypted, directed)
with pairing bit set

Generates and

transmits Encryption Key
(unencrypted, directed) to paired
LOBBYIST

If received transmission is directed to this
radio, saves key locally
@ Resets 1s transmit timeout timer

Transmits Status (unencrypted, directed)
with pairing bit set

Ready to start transmitting Control
packets

Ready to start receiving Control packets

Control sequence
(maximum 5 Hz)?

Encrypts Control packet with
accordance with section 5

Transmits Control packet (encrypted,
directed) to paired LOBBYIST

If received transmission is directed to this

radio:

@ Decrypts Control packet with locally
saved encryption key

@ Validates Control packet contents by
running and comparing Control packet
checksum

If decrypted checksum valid:

@ Resets 1s transmit timeout timer

@ Implements control commands

@ Increments encryption key index in
accordance with section 5

Increments encryption key index in
accordance with section 5

Transmits Status (unencrypted, directed)
with pairing bit set

Ready to start transmitting next Control
packet

Ready to start receiving next Control
packet

Control sequence
(decrypt error)

Encrypts Control packet with 32-byte
encryption key in accordance with
section 5

Sends Control packet (encrypted,
directed) to paired LOBBYIST

If received transmission is directed to this
radio:
@ Decrypts Control packet with locally

! The Control packet transmit-receive sequence depends on the PAC radio receiving a Status packet from the LOBBYIST radio to
acknowledge receipt of each Control packet. Depending on the delay required for the PAC to receive acknowledgement from
the LOBBYIST, the effective rate may be slower than 5 Hz.

13

saved encryption key in accordance
with section 5

@ Validates Control packet contents by
running and comparing Control packet
checksum

If decrypted checksum invalid:

@ Deactivates lift fan

@ Indicates available-for-pairing on DMC
@ Disables 45s pairing timer

@ Disables 1s transmit timeout timer

Transmits Status (unencrypted, directed)
with pairing bit cleared and decrypt error
bit set

Ready to transmit Request to Pair

Ready to receive Request to Pair

Communication link
lost (transmit timeout
timer expired)

If 1s transmit timeout timer expires:

@ Deactivates lift fan

@ Indicates available-for-pairing on DMC
@ Disables 45s DMC pairing timer

@ Disables 1s transmit timeout timer

Transmits Status (unencrypted, directed)
with pairing bit cleared

Ready to transmit Request to Pair

Ready to receive Request to Pair

Pairing timer timeout

If 45s pairing timer expires:

@ Deactivates lift fan

@ Indicates available-for-pairing on DMC
@ Disables 45s pairing timer

@ Disables 1s transmit timeout timer

Transmits Status (unencrypted, directed)
with pairing bit cleared

Ready to transmit Request to Pair

Ready to receive Request to Pair

Manual PAC unpair

Sends Control packet (encrypted,
directed) to paired LOBBYIST with
unpair bit set

@ Deactivates lift fan

@ Indicates available-for-pairing on DMC
@ Disables 45s pairing timer

@ Disables 1s transmit timeout timer

14

Transmits Status (unencrypted, directed)
with pairing bit cleared

Ready to transmit Request to Pair

Ready to receive Request to Pair

15

